Role of Zinc Signaling in the Regulation of Mast Cell-, Basophil-, and T Cell-Mediated Allergic Responses (2024)

1. Prasad A. S. Zinc: an overview. Nutrition. 1995;11(1 Supplement):93–99. [PubMed] [Google Scholar]

2. Frederickson C. J., Bush A. I. Synaptically released zinc: physiological functions and pathological effects. Biometals. 2001;14(3/4):353–366. doi:10.1023/A:1012934207456. [PubMed] [CrossRef] [Google Scholar]

3. Hirano T., Murakami M., f*ckada T., Nishida K., Yamasaki S., Suzuki T. Roles of zinc and zinc signaling in immunity: zinc as an intracellular signaling molecule. Advances in Immunology. 2008;97:149–176. doi:10.1016/S0065-2776(08)00003-5. [PubMed] [CrossRef] [Google Scholar]

4. f*ckada T., Yamasaki S., Nishida K., Murakami M., Hirano T. Zinc homeostasis and signaling in health and diseases: zinc signaling. Journal of Biological Inorganic Chemistry. 2011;16(7):1123–1134. doi:10.1007/s00775-011-0797-4. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

5. Wessels I., Maywald M., Rink L. Zinc as a gatekeeper of immune function. Nutrients. 2017;9(12, article 1286) doi:10.3390/nu9121286. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

6. Nishida K., f*ckada T., Yamasaki S., Murakami M., Hirano T. 13. Zinc in Allergy, Autoimmune, and Hard and Connective Tissue Diseases. IOS Press; 2011. [Google Scholar]

7. Frederickson C. J., Koh J. Y., Bush A. I. The neurobiology of zinc in health and disease. Nature Reviews Neuroscience. 2005;6(6):449–462. doi:10.1038/nrn1671. [PubMed] [CrossRef] [Google Scholar]

8. Rink L. Zinc and the immune system. The Proceedings of the Nutrition Society. 2000;59(4):541–552. doi:10.1017/S0029665100000781. [PubMed] [CrossRef] [Google Scholar]

9. Fernandes G., Nair M., Onoe K., Tanaka T., Floyd R., Good R. A. Impairment of cell-mediated immunity functions by dietary zinc deficiency in mice. Proceedings of the National Academy of Sciences of the United States of America. 1979;76(1):457–461. doi:10.1073/pnas.76.1.457. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

10. Fraker P. J., Caruso R., Kierszenbaum F. Alteration of the immune and nutritional status of mice by synergy between zinc deficiency and infection with Trypanosoma cruzi. The Journal of Nutrition. 1982;112(6):1224–1229. doi:10.1093/jn/112.6.1224. [PubMed] [CrossRef] [Google Scholar]

11. Keen C. L., Gershwin M. E. Zinc deficiency and immune function. Annual Review of Nutrition. 1990;10(1):415–431. doi:10.1146/annurev.nu.10.070190.002215. [PubMed] [CrossRef] [Google Scholar]

12. Ibs K. H., Rink L. Zinc-altered immune function. The Journal of Nutrition. 2003;133(5):1452S–1456S. doi:10.1093/jn/133.5.1452S. [PubMed] [CrossRef] [Google Scholar]

13. Telford W. G., Fraker P. J. Preferential induction of apoptosis in mouse CD4+CD8+ alpha beta TCRloCD3 epsilon lo thymocytes by zinc. Journal of Cellular Physiology. 1995;164(2):259–270. doi:10.1002/jcp.1041640206. [PubMed] [CrossRef] [Google Scholar]

14. Kambe T., Yamaguchi-Iwai Y., Sasaki R., Nagao M. Overview of mammalian zinc transporters. Cellular and Molecular Life Sciences. 2004;61(1):49–68. doi:10.1007/s00018-003-3148-y. [PubMed] [CrossRef] [Google Scholar]

15. Cousins R. J., Liuzzi J. P., Lichten L. A. Mammalian zinc transport, trafficking, and signals. The Journal of Biological Chemistry. 2006;281(34):24085–24089. doi:10.1074/jbc.R600011200. [PubMed] [CrossRef] [Google Scholar]

16. f*ckada T., Kambe T. Molecular and genetic features of zinc transporters in physiology and pathogenesis. Metallomics. 2011;3(7):662–674. doi:10.1039/c1mt00011j. [PubMed] [CrossRef] [Google Scholar]

17. Kimura T., Kambe T. The functions of metallothionein and ZIP and ZnT transporters: an overview and perspective. International Journal of Molecular Sciences. 2016;17(3):p. 336. doi:10.3390/ijms17030336. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

18. Andrews G. K. Cellular zinc sensors: MTF-1 regulation of gene expression. Biometals. 2001;14(3/4):223–237. doi:10.1023/A:1012932712483. [PubMed] [CrossRef] [Google Scholar]

19. Palmiter R. D. Protection against zinc toxicity by metallothionein and zinc transporter 1. Proceedings of the National Academy of Sciences of the United States of America. 2004;101(14):4918–4923. doi:10.1073/pnas.0401022101. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

20. Yamasaki S., Sakata-Sogawa K., Hasegawa A., et al. Zinc is a novel intracellular second messenger. The Journal of Cell Biology. 2007;177(4):637–645. doi:10.1083/jcb.200702081. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

21. Yamasaki S., Hasegawa A., Hojyo S., et al. A novel role of the L-type calcium channel α1D subunit as a gatekeeper for intracellular zinc signaling: zinc wave. PLoS One. 2012;7(6, article e39654) doi:10.1371/journal.pone.0039654. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

22. Nishida K., Yamasaki S. Zinc Signals in Cellular Functions and Disorders. Springer; 2014. [Google Scholar]

23. Murakami M., Hirano T. Intracellular zinc homeostasis and zinc signaling. Cancer Science. 2008;99(8):1515–1522. doi:10.1111/j.1349-7006.2008.00854.x. [PubMed] [CrossRef] [Google Scholar]

24. Metz M., Grimbaldeston M. A., Nakae S., Piliponsky A. M., Tsai M., Galli S. J. Mast cells in the promotion and limitation of chronic inflammation. Immunological Reviews. 2007;217(1):304–328. doi:10.1111/j.1600-065X.2007.00520.x. [PubMed] [CrossRef] [Google Scholar]

25. Kawakami T., Ando T., Kimura M., Wilson B. S., Kawakami Y. Mast cells in atopic dermatitis. Current Opinion in Immunology. 2009;21(6):666–678. doi:10.1016/j.coi.2009.09.006. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

26. Galli S. J., Tsai M. IgE and mast cells in allergic disease. Nature Medicine. 2012;18(5):693–704. doi:10.1038/nm.2755. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

27. Ho L. H., Ruffin R. E., Murgia C., Li L., Krilis S. A., Zalewski P. D. Labile zinc and zinc transporter ZnT4 in mast cell granules: role in regulation of caspase activation and NF-kappaB translocation. Journal of Immunology. 2004;172(12):7750–7760. doi:10.4049/jimmunol.172.12.7750. [PubMed] [CrossRef] [Google Scholar]

28. Truong-Tran A. Q., Ruffin R. E., Zalewski P. D. Visualization of labile zinc and its role in apoptosis of primary airway epithelial cells and cell lines. American Journal of Physiology-Lung Cellular and Molecular Physiology. 2000;279(6):L1172–L1183. doi:10.1152/ajplung.2000.279.6.L1172. [PubMed] [CrossRef] [Google Scholar]

29. Richter M., Bonneau R., Girard M. A., Beaulieu C., Larivée P. Zinc status modulates bronchopulmonary eosinophil infiltration in a murine model of allergic inflammation. Chest. 2003;123(3, article 446S) Supplement doi:10.1378/chest.123.3_suppl.446S. [PubMed] [CrossRef] [Google Scholar]

30. Zalewski P. D., Truong-Tran A. Q., Grosser D., Jayaram L., Murgia C., Ruffin R. E. Zinc metabolism in airway epithelium and airway inflammation: basic mechanisms and clinical targets. A review. Pharmacology & Therapeutics. 2005;105(2):127–149. doi:10.1016/j.pharmthera.2004.09.004. [PubMed] [CrossRef] [Google Scholar]

31. Riccioni G., D’Orazio N. The role of selenium, zinc and antioxidant vitamin supplementation in the treatment of bronchial asthma: adjuvant therapy or not? Expert Opinion on Investigational Drugs. 2005;14(9):1145–1155. doi:10.1517/13543784.14.9.1145. [PubMed] [CrossRef] [Google Scholar]

32. Xu T. F., Wang X. L., Yang J. Z., et al. Overexpression of Zip-2 mRNA in the leukocytes of asthmatic infants. Pediatric Pulmonology. 2009;44(8):763–767. doi:10.1002/ppul.21052. [PubMed] [CrossRef] [Google Scholar]

33. Kabu K., Yamasaki S., Kamimura D., et al. Zinc is required for FcεRI-mediated mast cell activation. The Journal of Immunology. 2006;177(2):1296–1305. doi:10.4049/jimmunol.177.2.1296. [PubMed] [CrossRef] [Google Scholar]

34. Torres-Alanís O., Garza-Ocañas L., Pineyro-Lopez A. Evaluation of urinary mercury excretion after administration of 2,3-dimercapto-1-propane sulfonic acid to occupationally exposed men. Journal of Toxicology: Clinical Toxicology. 1995;33(6):717–720. doi:10.3109/15563659509010636. [PubMed] [CrossRef] [Google Scholar]

35. Richter M., Cantin A. M., Beaulieu C., Cloutier A., Larivée P. Zinc chelators inhibit eotaxin, RANTES, and MCP-1 production in stimulated human airway epithelium and fibroblasts. American Journal of Physiology. Lung Cellular and Molecular Physiology. 2003;285(3):L719–L729. doi:10.1152/ajplung.00406.2002. [PubMed] [CrossRef] [Google Scholar]

36. Nishida K., Yamasaki S., Ito Y., et al. Fc {epsilon}RI-mediated mast cell degranulation requires calcium-independent microtubule-dependent translocation of granules to the plasma membrane. The Journal of Cell Biology. 2005;170(1):115–126. doi:10.1083/jcb.200501111. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

37. Goode B. L., Drubin D. G., Barnes G. Functional cooperation between the microtubule and actin cytoskeletons. Current Opinion in Cell Biology. 2000;12(1):63–71. doi:10.1016/S0955-0674(99)00058-7. [PubMed] [CrossRef] [Google Scholar]

38. Smith A. J., Pfeiffer J. R., Zhang J., Martinez A. M., Griffiths G. M., Wilson B. S. Microtubule-dependent transport of secretory vesicles in RBL-2H3 cells. Traffic. 2003;4(5):302–312. doi:10.1034/j.1600-0854.2003.00084.x. [PubMed] [CrossRef] [Google Scholar]

39. Schnapp B. J. Trafficking of signaling modules by kinesin motors. Journal of Cell Science. 2003;116(11):2125–2135. doi:10.1242/jcs.00488. [PubMed] [CrossRef] [Google Scholar]

40. Nechushtan H., Leitges M., Cohen C., Kay G., Razin E. Inhibition of degranulation and interleukin-6 production in mast cells derived from mice deficient in protein kinase Cbeta. Blood. 2000;95(5):1752–1757. [PubMed] [Google Scholar]

41. Klemm S., Gutermuth J., Hültner L., et al. The Bcl10–Malt1 complex segregates FcεRI-mediated nuclear factor κB activation and cytokine production from mast cell degranulation. The Journal of Experimental Medicine. 2006;203(2):337–347. doi:10.1084/jem.20051982. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

42. Corbalan-Garcia S., Gomez-Fernandez J. C. Protein kinase C regulatory domains: the art of decoding many different signals in membranes. Biochimica et Biophysica Acta. 2006;1761(7):633–654. doi:10.1016/j.bbalip.2006.04.015. [PubMed] [CrossRef] [Google Scholar]

43. Oancea E., Teruel M. N., Quest A. F. G., Meyer T. Green fluorescent protein (GFP)-tagged cysteine-rich domains from protein kinase C as fluorescent indicators for diacylglycerol signaling in living cells. The Journal of Cell Biology. 1998;140(3):485–498. doi:10.1083/jcb.140.3.485. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

44. Nishida K., Hasegawa A., Nakae S., et al. Zinc transporter Znt5/Slc30a5 is required for the mast cell-mediated delayed-type allergic reaction but not the immediate-type reaction. The Journal of Experimental Medicine. 2009;206(6):1351–1364. doi:10.1084/jem.20082533. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

45. Suzuki T., Ishihara K., Migaki H., et al. Zinc transporters, ZnT5 and ZnT7, are required for the activation of alkaline phosphatases, zinc-requiring enzymes that are glycosylphosphatidylinositol-anchored to the cytoplasmic membrane. Journal of Biological Chemistry. 2005;280(1):637–643. doi:10.1074/jbc.M411247200. [PubMed] [CrossRef] [Google Scholar]

46. Suzuki T., Ishihara K., Migaki H., et al. Two different zinc transport complexes of cation diffusion facilitator proteins localized in the secretory pathway operate to activate alkaline phosphatases in vertebrate cells. The Journal of Biological Chemistry. 2005;280(35):30956–30962. doi:10.1074/jbc.M506902200. [PubMed] [CrossRef] [Google Scholar]

47. Kambe T., Matsunaga M., Takeda T. A. Understanding the contribution of zinc transporters in the function of the early secretory pathway. International Journal of Molecular Sciences. 2017;18(10, article 2179) doi:10.3390/ijms18102179. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

48. Galli S. J. Mast cells and basophils. Current Opinion in Hematology. 2000;7(1):32–39. doi:10.1097/00062752-200001000-00007. [PubMed] [CrossRef] [Google Scholar]

49. Karasuyama H., Miyake K., Yoshikawa S., Yamanishi Y. Multifaceted roles of basophils in health and disease. Journal of Allergy and Clinical Immunology. 2018;142(2):370–380. doi:10.1016/j.jaci.2017.10.042. [PubMed] [CrossRef] [Google Scholar]

50. Schroeder J. T., MacGlashan D. W., jr., Lichtenstein L. M. Human basophils: mediator release and cytokine production. Advances in Immunology. 2001;77:93–122. doi:10.1016/S0065-2776(01)77015-0. [PubMed] [CrossRef] [Google Scholar]

51. Seder R. A., Paul W. E., Dvorak A. M., et al. Mouse splenic and bone marrow cell populations that express high-affinity Fc epsilon receptors and produce interleukin 4 are highly enriched in basophils. Proceedings of the National Academy of Sciences of the United States of America. 1991;88(7):2835–2839. doi:10.1073/pnas.88.7.2835. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

52. Sokol C. L., Barton G. M., Farr A. G., Medzhitov R. A mechanism for the initiation of allergen-induced T helper type 2 responses. Nature Immunology. 2008;9(3):310–318. doi:10.1038/ni1558. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

53. Voehringer D., Shinkai K., Locksley R. M. Type 2 immunity reflects orchestrated recruitment of cells committed to IL-4 production. Immunity. 2004;20(3):267–277. doi:10.1016/S1074-7613(04)00026-3. [PubMed] [CrossRef] [Google Scholar]

54. Ugajin T., Nishida K., Yamasaki S., et al. Zinc-binding metallothioneins are key modulators of IL-4 production by basophils. Molecular Immunology. 2015;66(2):180–188. doi:10.1016/j.molimm.2015.03.002. [PubMed] [CrossRef] [Google Scholar]

55. Ugajin T., Shibama S., Nishida K., Yokozeki H. Metallothioneins are required for human basophil interleukin-4 gene induction via FcɛRΙ stimulation. Allergology International. 2016;65(4):466–468. doi:10.1016/j.alit.2016.03.005. [PubMed] [CrossRef] [Google Scholar]

56. King M. M., Huang C. Y. The calmodulin-dependent activation and deactivation of the phosphoprotein phosphatase, calcineurin, and the effect of nucleotides, pyrophosphate, and divalent metal ions. Identification of calcineurin as a Zn and Fe metalloenzyme. The Journal of Biological Chemistry. 1984;259(14):8847–8856. [PubMed] [Google Scholar]

57. Rusnak F., Mertz P. Calcineurin: form and function. Physiological Reviews. 2000;80(4):1483–1521. doi:10.1152/physrev.2000.80.4.1483. [PubMed] [CrossRef] [Google Scholar]

58. Aydemir T. B., Liuzzi J. P., McClellan S., Cousins R. J. Zinc transporter ZIP8 (SLC39A8) and zinc influence IFN-gamma expression in activated human T cells. Journal of Leukocyte Biology. 2009;86(2):337–348. doi:10.1189/jlb.1208759. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

59. Huang J., Zhang D., Xing W., et al. An approach to assay calcineurin activity and the inhibitory effect of zinc ion. Analytical Biochemistry. 2008;375(2):385–387. doi:10.1016/j.ab.2007.12.016. [PubMed] [CrossRef] [Google Scholar]

60. Takahashi K., Akaishi E., Abe Y., et al. Zinc inhibits calcineurin activity in vitro by competing with nickel. Biochemical and Biophysical Research Communications. 2003;307(1):64–68. doi:10.1016/S0006-291X(03)01122-7. [PubMed] [CrossRef] [Google Scholar]

61. Hayashi K., Ishizuka S., Yokoyama C., Hatae T. Attenuation of interferon-gamma mRNA expression in activated Jurkat T cells by exogenous zinc via down-regulation of the calcium-independent PKC-AP-1 signaling pathway. Life Sciences. 2008;83(1-2):6–11. doi:10.1016/j.lfs.2008.04.022. [PubMed] [CrossRef] [Google Scholar]

62. Zhou Z., Wang L., Song Z., Saari J. T., McClain C. J., Kang Y. J. Abrogation of nuclear factor-kappaB activation is involved in zinc inhibition of lipopolysaccharide-induced tumor necrosis factor-alpha production and liver injury. The American Journal of Pathology. 2004;164(5):1547–1556. doi:10.1016/S0002-9440(10)63713-3. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

63. Bao B., Prasad A. S., Beck F. W. J., Godmere M. Zinc modulates mRNA levels of cytokines. American Journal of Physiology-Endocrinology and Metabolism. 2003;285(5):E1095–E1102. doi:10.1152/ajpendo.00545.2002. [PubMed] [CrossRef] [Google Scholar]

64. Driessen C., Hirv K., Wellinghausen N., Kirchner H., Rink L. Influence of serum on zinc, toxic shock syndrome toxin-1, and lipopolysaccharide-induced production of IFN-gamma and IL-1 beta by human mononuclear cells. Journal of Leukocyte Biology. 1995;57(6):904–908. doi:10.1002/jlb.57.6.904. [PubMed] [CrossRef] [Google Scholar]

65. Rink L., Kirchner H. Zinc-altered immune function and cytokine production. The Journal of Nutrition. 2000;130(5):1407S–1411S. doi:10.1093/jn/130.5.1407S. [PubMed] [CrossRef] [Google Scholar]

66. Wellinghausen N., Martin M., Rink L. Zinc inhibits interleukin-1-dependent T cell stimulation. European Journal of Immunology. 1997;27(10):2529–2535. doi:10.1002/eji.1830271010. [PubMed] [CrossRef] [Google Scholar]

67. Yu M., Lee W. W., Tomar D., et al. Regulation of T cell receptor signaling by activation-induced zinc influx. The Journal of Experimental Medicine. 2011;208(4):775–785. doi:10.1084/jem.20100031. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

68. Palacios E. H., Weiss A. Function of the Src-family kinases, Lck and Fyn, in T-cell development and activation. Oncogene. 2004;23(48):7990–8000. doi:10.1038/sj.onc.1208074. [PubMed] [CrossRef] [Google Scholar]

69. Altan-Bonnet G., Germain R. N. Modeling T cell antigen discrimination based on feedback control of digital ERK responses. PLoS Biology. 2005;3(11, article e356) doi:10.1371/journal.pbio.0030356. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

70. Prasad A. S. Zinc and immunity. Molecular and Cellular Biochemistry. 1998;188(1/2):63–69. doi:10.1023/A:1006868305749. [PubMed] [CrossRef] [Google Scholar]

71. Bhutta Z. A., Bird S. M., Black R. E., et al. Therapeutic effects of oral zinc in acute and persistent diarrhea in children in developing countries: pooled analysis of randomized controlled trials. The American Journal of Clinical Nutrition. 2000;72(6):1516–1522. doi:10.1093/ajcn/72.6.1516. [PubMed] [CrossRef] [Google Scholar]

72. Dutta S. K., Procaccino F., Aamodt R. Zinc metabolism in patients with exocrine pancreatic insufficiency. Journal of the American College of Nutrition. 1998;17(6):556–563. doi:10.1080/07315724.1998.10718803. [PubMed] [CrossRef] [Google Scholar]

73. Fraker P. J., King L. E., Laakko T., Vollmer T. L. The dynamic link between the integrity of the immune system and zinc status. The Journal of Nutrition. 2000;130(5):1399S–1406S. doi:10.1093/jn/130.5.1399S. [PubMed] [CrossRef] [Google Scholar]

74. King L. E., Osati-Ashtiani F., Fraker P. J. Depletion of cells of the B lineage in the bone marrow of zinc-deficient mice. Immunology. 1995;85(1):69–73. [PMC free article] [PubMed] [Google Scholar]

75. Krebs N. F., Sontag M., Accurso F. J., Hambidge K. M. Low plasma zinc concentrations in young infants with cystic fibrosis. The Journal of Pediatrics. 1998;133(6):761–764. doi:10.1016/S0022-3476(98)70147-7. [PubMed] [CrossRef] [Google Scholar]

76. Prasad A. S. Clinical and biochemical manifestation zinc deficiency in human subjects. Journal de Pharmacologie. 1985;16(4):344–352. [PubMed] [Google Scholar]

77. Tapazoglou E., Prasad A. S., Hill G., Brewer G. J., Kaplan J. Decreased natural killer cell activity in patients with zinc deficiency with sickle cell disease. The Journal of Laboratory and Clinical Medicine. 1985;105(1):19–22. [PubMed] [Google Scholar]

78. Zemel B. S., Kawchak D. A., Fung E. B., Ohene-Frempong K., Stallings V. A. Effect of zinc supplementation on growth and body composition in children with sickle cell disease. The American Journal of Clinical Nutrition. 2002;75(2):300–307. doi:10.1093/ajcn/75.2.300. [PubMed] [CrossRef] [Google Scholar]

79. Ohkawara T., Takeda H., Kato K., et al. Polaprezinc (N-(3-aminopropionyl)-L-histidinato zinc) ameliorates dextran sulfate sodium-induced colitis in mice. Scandinavian Journal of Gastroenterology. 2005;40(11):1321–1327. doi:10.1080/00365520510023530. [PubMed] [CrossRef] [Google Scholar]

80. Tran C. D., Ball J. M., Sundar S., Coyle P., Howarth G. S. The role of zinc and metallothionein in the dextran sulfate sodium-induced colitis mouse model. Digestive Diseases and Sciences. 2007;52(9):2113–2121. doi:10.1007/s10620-007-9765-9. [PubMed] [CrossRef] [Google Scholar]

81. Kitabayashi C., f*ckada T., Kanamoto M., et al. Zinc suppresses Th17 development via inhibition of STAT3 activation. International Immunology. 2010;22(5):375–386. doi:10.1093/intimm/dxq017. [PubMed] [CrossRef] [Google Scholar]

82. Bettelli E., Oukka M., Kuchroo V. K. T(H)-17 cells in the circle of immunity and autoimmunity. Nature Immunology. 2007;8(4):345–350. doi:10.1038/ni0407-345. [PubMed] [CrossRef] [Google Scholar]

83. Nishihara M., Ogura H., Ueda N., et al. IL-6-gp130-STAT3 in T cells directs the development of IL-17+ Th with a minimum effect on that of Treg in the steady state. International Immunology. 2007;19(6):695–702. doi:10.1093/intimm/dxm045. [PubMed] [CrossRef] [Google Scholar]

84. Ivanov I. I., McKenzie B. S., Zhou L., et al. The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell. 2006;126(6):1121–1133. doi:10.1016/j.cell.2006.07.035. [PubMed] [CrossRef] [Google Scholar]

85. Veldhoen M., Hocking R. J., Atkins C. J., Locksley R. M., Stockinger B. TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity. 2006;24(2):179–189. doi:10.1016/j.immuni.2006.01.001. [PubMed] [CrossRef] [Google Scholar]

86. f*ckuyama S., Matsunaga Y., Zhanghui W., et al. A zinc chelator TPEN attenuates airway hyperresponsiveness and airway inflammation in mice in vivo. Allergology International. 2011;60(3):259–266. doi:10.2332/allergolint.09-OA-0167. [PubMed] [CrossRef] [Google Scholar]

87. Toyran M., Kaymak M., Vezir E., et al. Trace element levels in children with atopic dermatitis. Journal of Investigational Allergology & Clinical Immunology. 2012;22(5):341–344. [PubMed] [Google Scholar]

88. David T. J., Wells F. E., Sharpe T. C., Gibbs A. C. C., Devlin J. Serum levels of trace metals in children with atopic eczema. British Journal of Dermatology. 1990;122(4):485–489. doi:10.1111/j.1365-2133.1990.tb14725.x. [PubMed] [CrossRef] [Google Scholar]

89. Kim J. E., Yoo S. R., Jeong M. G., Ko J. Y., Ro Y. S. Hair zinc levels and the efficacy of oral zinc supplementation in patients with atopic dermatitis. Acta Dermato-Venereologica. 2014;94(5):558–562. doi:10.2340/00015555-1772. [PubMed] [CrossRef] [Google Scholar]

90. Mohamed N. A., Rushdy M., Abdel-Rehim A. S. M. The immunomodulatory role of zinc in asthmatic patients. Cytokine. 2018;110:301–305. doi:10.1016/j.cyto.2018.03.007. [PubMed] [CrossRef] [Google Scholar]

91. Ghaffari J., Khalilian A., Salehifar E., Khorasani E., Rezaii M. S. Effect of zinc supplementation in children with asthma: a randomized, placebo-controlled trial in northern Islamic Republic of Iran. Eastern Mediterranean Health Journal. 2014;20(6):391–396. doi:10.26719/2014.20.6.391. [PubMed] [CrossRef] [Google Scholar]

92. Rerksuppaphol S., Rerksuppaphol L. Zinc supplementation in children with asthma exacerbation. Pediatric Reports. 2016;8(4, article 6685) doi:10.4081/pr.2016.6685. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Role of Zinc Signaling in the Regulation of Mast Cell-, Basophil-, and T Cell-Mediated Allergic Responses (2024)
Top Articles
Latest Posts
Article information

Author: Amb. Frankie Simonis

Last Updated:

Views: 5968

Rating: 4.6 / 5 (56 voted)

Reviews: 95% of readers found this page helpful

Author information

Name: Amb. Frankie Simonis

Birthday: 1998-02-19

Address: 64841 Delmar Isle, North Wiley, OR 74073

Phone: +17844167847676

Job: Forward IT Agent

Hobby: LARPing, Kitesurfing, Sewing, Digital arts, Sand art, Gardening, Dance

Introduction: My name is Amb. Frankie Simonis, I am a hilarious, enchanting, energetic, cooperative, innocent, cute, joyous person who loves writing and wants to share my knowledge and understanding with you.